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The phase transition in theq-state Potts model with homogeneous ferromagnetic couplings is strongly first
order for largeq, while it is rounded in the presence of quenched disorder. Here we study this phenomenon on
different two-dimensional lattices by using the fact that the partition function of the model is dominated by a
single diagram of the high-temperature expansion, which is calculated by an efficient combinatorial optimiza-
tion algorithm. For a given finite sample with discrete randomness the free energy is a piecewise linear
function of the temperature, which is rounded after averaging, however, the discontinuity of the internal energy
at the transition point(i.e., the latent heat) stays finite even in the thermodynamic limit. For a continuous
disorder, instead, the latent heat vanishes. At the phase transition point the dominant diagram percolates and the
total magnetic moment is related to the size of the percolating cluster. Its fractal dimension is founddf =s5
+Î5d /4 and it is independent of the type of the lattice and the form of disorder. We argue that the critical
behavior is exclusively determined by disorder and the corresponding fixed point is the isotropic version of the
so-called infinite randomness fixed point, which is realized in random quantum spin chains. From this mapping
we conjecture the values of the critical exponents asb=2−df, bs=1/2, andn=1.
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I. INTRODUCTION

Quenched disorder has generally a softening effect on the
singularities of phase transitions in homogeneous systems.
As an example we mention that in the two-dimensional(2D)
Ising model the ordered phase(and thus the phase transition)
is washed out by random fields[1,2], whereas due to layered
bond randomness the Onsager logarithmic singularity in the
specific heat of the homogeneous system will turn into a very
weak essential singularity(McCoy-Wu model) [3]. Singu-
larities at first-order phase transitions are also softened[4]. In
3D the latent heat is either reduced by a finite extent(for
weak disorder) or the latent heat completely disappears and
the transition becomes second order(for sufficiently strong
disorder) [5]. In 2D, according to the rigorous result by Ai-
zenman and Wehr[1] there is no phase coexistence in the
presence of continuous disorder, thus the phase transition is
always continuous. Thus there exists a set of random fixed
points whose possible classification is a great challenge of
statistical physics. However, as in the theory of disordered
systems, exact results in this field are scarce and therefore
our present understanding of the subject is limited. Since a
weak-disorder perturbation calculation starting from the pure
system’s fixed point is not feasible most of the existing re-
sults are numerical. In this respect an important role is
played by theq-state ferromagnetic Potts model[6], in which
the homogeneous phase transition is of first order forq.4 in
2D [7] and forqù3 in 3D.

According to Monte Carlo[8] and transfer-matrix[9] in-
vestigations the critical behavior of the 2D random bond
Potts model(RBPM) is governed by a line ofq-dependent
fixed points. For a givenq the critical exponents are expected
to be disorder independent; however, generally there is a
strong crossover regime[10]. The anomalous dimension of

the magnetization,x, shows a smooth, monotonously in-
creasingq dependence, which saturates at a given finite
value asq→`. On the other hand the critical exponent of the
correlation length,n, which is related to energy-density cor-
relations, is found to show only a very weakq dependence.
The measured values are all around the rigorous bound[11],
n=2/d=1, which is required by general theorem for disor-
dered systems.(Note, however, the conflicting result in Ref.
[9], which is probably due to the use of the bimodal, i.e.,
discrete form of disorder.)

Despite the intensive numerical studies performed so far
several aspects of the phase transition in the RBPM are not
clarified yet. Here we mention that there is still little knowl-
edge about the mechanism which leads to the softening of
the first-order transition. The effect of different types of dis-
order, continuous or discrete, has not been investigated. Also
universality of the transition with respect to the lattice struc-
ture is still an open question. Finally, and most importantly,
there is no example for a specific system in which the critical
properties are(conjecturedly) exactly known.

In this paper we are going to investigate the aforemen-
tioned questions using the example of the 2D RBPM in the
large-q limit. The use of this model has several advantages:
(i) The homogeneous model, which has a strongly first-order
phase transition, can be solved analytically[6]. (ii ) In the
presence of randomness the model shows the generic fea-
tures of disorder-rounded first-order phase transitions.(iii ) It
allows for an important technical simplification since the
high-temperature expansion of the model[12] (with arbitrary
ferromagnetic couplings) is dominated by a single diagram,
whose calculation is reduced to an optimization problem
[13]. (iv) Finally, this optimization problem is polynomial
and there exists a powerful combinatorial optimization algo-
rithm [14] which works in strongly polynomial time, i.e., the
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necessary computational power does not depend on the ac-
tual form of the disorder.

This model, which we shall refer simply as random bond
Potts model in the following, has already been considered in
several previous works. Cardy and Jacobsen[9] have shown
a mapping with the random-field Ising model in the level of
interface Hamiltonians, which explains the vanishing of the
latent heat at the transition point. Numerical studies for large
(but finite) q values[15] predicted a smooth and nonsingular
behavior of the critical exponents asq→`. Relation of the
random bond Potts model with an optimization problem was
introduced and studied by the method of simulated annealing
in Ref. [13]. The optimization problem was mathematically
analyzed in Ref.[14]. Here its relation with submodular
function optimization was shown and an efficient computa-
tional algorithm was developed. Some numerical results ob-
tained by the optimization method have been briefly an-
nounced in a paper[16].

The structure of the paper is the following. The model, its
random cluster representation, and the way how its thermo-
dynamical and correlational properties are related to the
dominant diagram are given in Sec. II. In Sec. III the mecha-
nism of breaking of phase coexistence is analyzed and an
estimate of the breaking-up length is given through extreme
value statistics. Thermal quantities(internal energy, specific
heat) are calculated in Sec. IV. In particular we study the
effect of discrete and continuous disorder as well as the lo-
cation of the transition point for different 2D lattices. The
magnetization properties of the model, which are related to
the percolative properties of the largest connected cluster of
the dominant diagram, are studied in Sec. V. In Sec. VI we
show arguments and approximate mappings between our
model and random quantum spin chains which lead us to
conjecture the exact values of the critical exponents. Our
conclusions are drawn in the final section while two simple
examples are given in the Appendix.

II. FORMALISM: THE LARGE- q-STATE POTTS MODEL

Theq-state Potts model[6] is defined by the Hamiltonian

H = − o
ki,jl

Jijdssi,s jd s1d

in terms of the Potts-spin variablessi =0,1, . . . ,q−1 at sitei.
The summation runs over all edges of a latticeki , jlPE, and
in our study the couplings,Jij .0, are independent identi-
cally distributed(i.i.d.) random variables. We consider the
system in the large-q limit where, being the entropy per site
s, ln q, it is convenient to introduce the reduced tempera-
ture T8=T ln q=Os1d and its inverse asb8=1/T8=b / ln q.
In the following we use these reduced variables but omit in
the notation the prime. In terms of these variables the parti-
tion function is given by

Z ; o
hsj

q−bHshsjd, s2d

which is convenient to express in the random cluster repre-
sentation[12] as

Z = o
G#E

qcsGd p
i j PG

fqbJij − 1g. s3d

Here the sum runs over all subsets of bonds,G#E, andcsGd
stands for the number of connected components ofG.

In the large-q limit, whereqbJij @1, the partition function
can be written as

Z = o
G#E

qfsGd, fsGd = csGd + b o
i j PG

Jij , s4d

which is dominated by the largest term,f* =maxGfsGd, so
that

Z = n0q
f*

s1 + ¯d. s5d

Here the degeneracy of the optimal setG* is n0=Os1d and
the omitted corrections in the right-hand side(rhs) go to zero
for largeq. The free energy per site is proportional tof* and
given by

− bf =
f*

N
, s6d

whereN stands for the number of sites of the lattice. In the
Appendix we give an illustration of the convergence withq
of the family of functionfqsbd.

All information about the random bond Potts model is
contained in the optimal setG* . The thermal properties are
calculated fromf* , whereas the magnetization and the cor-
relation function are obtained from its geometrical structure.
First we note that correlation between two individual sites is
unity only if both are in the same connected cluster, other-
wise the correlation is zero. In this way theaveragecorrela-
tion functionCsrd is related to the distribution of clusters in
the optimal set. Next we note that if, and only if, there is an
infinite cluster the correlation function approaches a finite
asymptotic value, limr→`Csrd=m2. The magnetizationm, de-
fined in this way, is the fraction of sites in the infinite cluster.
In the ferromagnetic phase,T,Tc, the magnetization is
m.0 and vanishes at the critical pointTc as m,s−tdb,
where the relative distance from the phase transition point is
measured byt=sT−Tcd /Tc. As usual the divergence of the
correlation lengthj at the critical point is given in the form
j,utu−n, wherej is defined as the average size of the clus-
ters. At the critical point the largest cluster is a fractal and its
massM scales with the linear size of the systemL as M
,Ldf, wheredf is the fractal dimension. Spin-spin correla-
tions at the critical point decay algebraically asCsrd, r−2x,
where the magnetization scaling dimension is given byx
=d−df =b /n.

In a system with a free surface one can define surface
quantities, whose singularities are governed by surface expo-
nents. In the ferromagnetic phase the fraction of surface sites
belonging to the largest cluster defines the surface magneti-
zation, which scales asms,s−tdbs. At the critical point
surface-surface correlations decay asCssrd, r−2xs and the
surface scaling dimensionxs is related to the surface fractal
dimensiondf

s asd−1=df
s+xs. We have alsobs=xsn.
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In the random bond Potts model in the large-q limit the
structure and the fractal properties of the optimal set are
dominated by disorder effects. Other examples of systems in
which the disorder is dominant at the critical point are ran-
dom quantum spin chains[17], for which the set of critical
exponents is exactly known. This analogy and a possible
isomorphism between the fixed points of the two problems,
which will be discussed in detail in Sec. VI, lead us to con-
jecture the value of the critical exponents for the random
bond Potts model, which we list below.

The fractal dimension of the infinite cluster at the transi-
tion point and the scaling dimension of the(bulk) magneti-
zation are related to the golden-mean ratio,f=s1+Î5d /2, as

df = 1 +f/2, x = 1 −f/2. s7d

The analogous surface quantities are conjectured to be

df
s = 1/2, xs = 1/2. s8d

Finally, the correlation length exponent is given by

n = 1, s9d

thus saturating the rigorous bound for disordered systems
[11]: nù1.

We close this section by a few technical remarks. The cost
function of the problemfsGd, given in Eq.(4), is a super-
modular function, thus there exists a combinatorial optimiza-
tion method[18] to maximize it. For the particular expres-
sion of fsGd in the present model a specific efficient
algorithm, the optimal cooperation algorithm[14], has been
formulated. The largest random system we treated by this
method is a 5123512 square lattice.

The investigations in this paper are restricted to two di-
mensions. In particular we work on the square lattice for
which the location of the critical point is known for some
distribution of the couplings. For 0,bJij ,1 and for a sym-

metric distributionPsJ̄+Jd=PsJ̄−Jd, where J̄ is the mean
coupling, the critical point is given by self-duality as[19]

Tc =
1

bc
= 2J̄. s10d

In the numerical calculations we used either a discrete(bi-
modal) distribution,

PbsJd = pdsJ̄ − D − Jd + s1 − pddsJ̄ + D − Jd, s11d

which is symmetric forp=1−p=1/2, or acontinuous(uni-
form) distribution,

PusJd =H1/2D for J̄ − D , J , J̄ + D

0 otherwise.
s12d

In practical applications the latter distribution is approxi-
mated by a set of discrete peaks[see, for example, Eq.(19)],
which is necessary since the algorithm works in terms of
rational numbers. In the numerical calculations we collected
data about systems up to a linear sizeL=256. The number of
realizations were about 106 for the smaller systems and
around 103 for the largest one. To check universality, we

considered non-self-dual randomness, analyzing triangular
and hexagonal lattices with number of sites up to 16384.

III. DESTRUCTION OF PHASE COEXISTENCE
DUE TO DISORDER

In this section we consider the phase transition in the
nonrandom system and see how introduction of disorder will
destroy the phase coexistence, i.e., soften the first-order
phase transition into a second-order one. In particular in 2D
we will estimate the disorder dependent length scalelb, at
which the phase coexistence no longer exists.

The solution of the optimization problem in Eq.(5) de-
pends on the temperature: the optimal set is generally more
interconnected in low temperature and contains more discon-
nected parts in higher temperature. In the homogeneous,
nonrandom model withJij =J there are only two(trivial) ho-
mogeneous optimal sets: the fully connected diagram and the
empty diagram. Consequently the free energy of the homo-
geneous systemsfhomd is given by

− Nbfhom= H1 + NbJz, T , Tc

N, T . Tc,
s13d

where z is the connectivity of the lattice. At the phase-
transition point,bc=1/Tc=s1−1/Nd / sJzd, there is phase co-
existence, thus the phase transition is of first order and the
latent heatDe has its possible maximal value:bcDe=1. Note
that this result holds for any regular(even finite) lattice.

As quenched disorder is switched on, say in the paramag-
netic phase, its fluctuations will locally prefer the existence
of the nonstable fully connected homogeneous diagram, and
this tendency is stronger around the phase-transition point,
where the free-energy difference between the two homoge-
neous phases is small. This mechanism, as the temperature is
lowered, will result in a sequence of nonhomogeneous opti-
mal sets with increasing fraction of connected component,
whose average size is just the correlation lengthj. If j stays
finite at the phase transition point then there is phase coex-
istence and thus the first-order nature of the transition per-
sists. This is the case in 3D for sufficiently weak disorder.

In 2D, however, for any small amount of continuous dis-
order the correlation length is divergent at the transition
point, thus the phase transition softens to second order. This
is true in the thermodynamic limit, while in a finite system of
linear sizeL weak disorder fluctuations could be not suffi-
cient to break phase coexistence. The finite length scale,lb
=L, at which the breaking of phase coexistence takes place,
can be estimated through extreme value statistics in the fol-
lowing way [20].

At the transition point of the homogeneous system, i.e., at
b=1/sJzd, we compare the stability of the empty graph with
a nonhomogeneous diagramGS, in which all sites are iso-
lated except that of a domain ofS spins, which are fully
connected. The relative cost function is given by

W= b o
i j PGS

Jij − S+ 1

= b o
i j PGS

sJij − Jd + bJsSz− aS1/2d − S+ 1

.
S1/2D

zJ
sz − Ja/Dd + 1, s14d
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where we used that the distribution is symmetric, withJ̄=J.
Here in the second line the number of occupied edges ofGS
is Szminus the missing bonds at the perimeter of the fully
connected domain, which is given byaS1/2. In the last equa-
tion we used that we are at the critical temperature and in-
troduced the representationoi jsJij −Jd=DS1/2z, in terms of
the Gaussian random variablez, which has zero mean and
variance one.

Next we consider all independent positions of the fully
connected domain in the finite lattice, whose number is de-
noted byNS, and look for the largest value of the cost func-
tion, W0, in these diagrams. According to extreme value sta-
tistics [21] in the largeNS limit its value is related to the
cumulative probability distributionPsW.W0d and follows
from the equation

NSPsW. W0d = 1. s15d

Making use of the relation for a Gaussian variable,
Psz.z0d.exps−z0

2/2d /z0, we obtain from Eq.(15) that
W0.0, i.e., the new diagram has a larger cost function than
the empty set, ifNS.expfconstsJ/Dd2g. Here we are inter-
ested in the case whenS is in the same order asL2, i.e., when
there is a complete breaking of the homogeneous diagram, in
which caseNS scales asNS,La, with 0,a,2. Thus the
breaking-up length scale is justlb,L and given by

lb < l0 expFAS J

D
D2G , s16d

wherel0 is a reference length.
The relation betweenlb and D has been studied numeri-

cally, by calculating the smallestD at which the breaking of
phase coexistence in a system of sizeL takes place.(We used
periodic boundary conditions.) An example of a nonhomoge-
neous optimal diagram obtained in this way for the bimodal
disorder is illustrated in Fig. 1.

For the bimodal disorder the distribution of the limiting
values ofD for a given sizeL=64 is shown in Fig. 2. The
distribution consists of several individual peaks; some of
those are related to instabilities due to small finite plaquettes.
The size of the smallest such plaquette,l, is given by l
,J/D, but the typical size of a connected domain varies
betweenl andL, thus there are strong sample-to-sample fluc-
tuations. We have checked the validity of the relation in Eq.
(16) for the bimodal distribution and the result is plotted in
Fig. 3. In the region of sizeLø128 we could work the
asymptotic behavior in Eq.(16) has not yet been reached; the
data points deviate from the expected straight line. The ef-
fective behavior of the breaking-up length for these sizes is
better described(the relative error is 0.003) by a dependence
ln L,J/D, as seen in the inset. In the numerical calculation
J/D goes to infinity faster than the prediction given above in
Eq. (16), because we implicitly consider in Eq.(14) a Eu-
clidean domainS, whereas the optimal cooperation algorithm
finds more complicated domains.

FIG. 1. Nonhomogeneous optimal diagram for the bimodal dis-
tribution at a sizeL=256, corresponding to the breaking up disor-
der,D /J=693/2693=0.2573. The connected part of the diagram is
compact and percolates in one direction.

FIG. 2. Distribution of the breaking-up strength of bimodal dis-
order for a sizeL=64. The large individual peak atD /J=1/3 cor-
responds to an instability due to a 333 plaquette.

FIG. 3. System sizeL as a function of the inverse average
breaking-up disorder,sJ/Dd2, for bimodal distribution.(In the aver-
age ofJ/D we considered the contribution of all peaks). For the
sizes we considered a fit withsJ/Dd is better, as shown in the inset.
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We have repeated this calculation by using a(quasi)con-
tinuous disorder, which is approximated by 127 discrete
peaks. As seen in Fig. 4 now the distribution of the breaking
strengthD, for a relatively small sizeL=16, is Gaussian-like;
however, for a sizeLù32, there is a secondary structure
reflecting the effect of discreteness in the representation of
disorder. As can be seen in Table I, the measured breaking
strengths are consistent with the result in Eq.(16), unless for
the two larger sizes, where the effect of discreteness of the
distribution becomes significant.

In the numerical calculations on the critical properties of
the RBPM, whose results are reported in the following sec-
tions, we always choose the disorder strong enough, so that
the relationL@ lb is satisfied.

At this point we comment on a relation between the
RBPM in the large-q limit and the random-field Ising model
(RFIM) at T=0, which has already been observed by Cardy
and Jacobsen[9]. The form of the cost function in Eq.(14) is
identical to that of the RFIM, where bonds in the RBPM are

equivalent to sites in the RFIM having a random field of
Jij −J and the perimeter contribution in Eq.(14) is related to
the domain-wall energy in the RFIM. ThusbJ corresponds
to the ferromagnetic coupling in the RFIM. This mapping on
the level of the interface Hamiltonian is, however, restricted
to a smooth, nonfractal interface. Therefore it applies in the
same way in the stability analysis of the pure phases, result-
ing in a similar breaking-up length scale as in Eq.(16). How-
ever the(fractal) structures of the clusters in the two prob-
lems are different. As a consequence the bulk and surface
fractal dimensions(and the related critical exponents) are
different in the two problems. For the RFIM the percolating
clusters have the same fractal properties as ordinary(site)
percolation, as has been demonstrated by numerical calcula-
tions [22].

IV. SINGULARITIES OF THERMAL QUANTITIES FOR
DISCRETE AND CONTINUOUS DISORDER

In this section we analyze the singularities of thermal
quantities, in particular we consider the internal energye and
the specific heatcV. We start to rewrite Eq.(6) for the free
energy of a given realization of disorder as

F = − csG*dT − o
i j PG*

Jij , s17d

where the optimal setG* changes discontinuously as tem-
perature is varied. For sufficiently high temperature,
b8z maxsJd,1, G* is the empty set, whereas for low tem-
peratures,b8z minsJd.1, it is fully connected. In between,
around the transition point, however, there are more frequent
changes. In a finite system of sizeL, the temperature interval
of stability of the optimal set is found numerically to be
around,1/L for the bimodal distribution. As a consequence
in a finite system the free energy is a piecewise linear func-
tion of the temperature, whose slope[the entropycsG*d] is
monotonously increasing with the temperature. From Eq.
(17) the internal energy is obtained by derivation, which for
a given sample is

E = − o
i j PG*

Jij . s18d

This is a piecewise constant function of the temperature.
Thus in a given sample, even for a finite system, the internal
energy shows discontinuities. We illustrate this point in a
simple example in the Appendix, where the comparison be-
tween the bimodal and the uniform distributions for a general
simple triangle is given. In the given(finite) sample the
phase transition point separates the two qualitatively differ-
ent regimes in which the largest cluster is not percolating
(paramagnetic phase) from that in which it is percolating
(ferromagnetic phase). This phase transition in the given
sample is sharp and of first order. Later we shall use this
definition to locate the transition point of a series of samples
and study their distribution.

In the random system, as we mentioned before, the aver-
age quantities, such as the average free energy and its deriva-
tives, are of physical relevance. The averaging procedure

FIG. 4. Distribution of the breaking-up strength of quasicontinu-
ous disorder composed ofm=127 individual peaks in Eq.(19) for
two different sizes. For larger sizes the separated peaks are due to
the discreteness of the disorder.

TABLE I. Breaking strengths for the continuous disorder(for
the fourth columnL0.1 is used).

L kDsLd

J l sD/J sD

J d2

ln
L

L0 Samples

16 0.34854 0.00016 0.3368 31324

24 0.3275 0.0002 0.3408 13927

32 0.3142 0.0002 0.3422 14786

48 0.3133 0.0002 0.3801 15561

64 0.3075 0.0004 0.3932 2878
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generally acts to smear out the discontinuities in the internal
energy. In this respect the behavior of the averaged quantities
is different for the discrete and the continuous distributions.
(See also the example in the Appendix.) As illustrated in Fig.
5 for the bimodal distribution several discontinuities remain
in the average internal energy, whereas for the uniform dis-
tribution the average internal energy is continuous, as illus-
trated in Fig. 6. For the discrete distribution the origin of the
discontinuities is the degeneracies off at some temperature.
For example, consider a square lattice where the bonds fol-
low the bimodal distribution in Eq.(11). In this lattice let us
focus on an elementary square, whose bonds are all strong.
The sites of this plaquette are either nonconnected(giving a
contribution tof of 4T) or fully connected[with a contribu-

tion to f of T+4sJ̄+Dd]. These two situations are degenerate

at T=4/3sJ̄+Dd. The average jump in the internal energyDe
at this temperature can be estimated by the approximation

with independent plaquettes, where a fraction of 1/8 squares
have the above degeneracy, each of which gives a local jump
per site of 3T/4. ThusDe<3T/32 which agrees reasonably
well with the measured jump in Fig. 5.

The average internal energy displays also a finite jump at
the transition point, as illustrated in the inset to Fig. 5. For
the bimodal distribution this jump comes from those con-
figurations in which a corner site has a strong and a weak
bond, so that the isolated corner and the connected corner
have the same contribution. The fraction of these corners is
finite at the transition point, which leads to a finite average
jump. Note, however, that the positions of these degenerate
corners are distributed overall in the sample, thus their con-
tribution is not exclusively related to the appearance of a
percolating cluster.

The jumps in the average internal energy will disappear, if
a continuous distribution of disorder is used. To illustrate it
we used a distribution, which consists of 2m discrete peaks
of equal weight:

PmsJd =
1

2m
o
k=0

m−1

hd„J̄ − D − fsm− 1d/2 − kg« − J… + d„J̄ + D

+ fsm− 1d/2 − kg« − J…j s19d

so that in the large-m limit we approach a continuous distri-
bution. In Eq.(19) « is a small number, and in the simulation

«=2J̄10−5 has been used. As shown in the inset to Fig. 6 the
jump in the average internal energy at the transition point
goes to zero as,1/m, which can be understood as follows.
For a given corner site out ofm2 different coupling sets there
are only m for which the degeneracy, as described for the
bimodal distribution, holds. Therefore the average jump
should scale with 1/m, as observed.

Going back to the internal energy for the bimodal distri-
bution we argue that the true singularity can be observed at
two sides of the transition point, i.e., ast→0+ or t→0−. In a
finite system of lengthL, we expect a singularity in the form

est,Ld = es0+,Ld + t1−aẽstL1/nd, t . 0, s20d

and similarly for tø0. Here the specific heat exponenta
satisfies the hyperscaling relation:dn=2−a. The scaling
function ẽsyd is expected to be an odd function and, thus, for
small argument, to behave asẽsyd,y. The scaling prediction
in Eq. (20) has been checked and the results are shown in
Fig. 7. The scaling collapse of the data is indeed very good
with the exponentsn=1 anda=0, as conjectured in Eq.(9).
From the collapse of the points we estimaten=1 within a
numerical precision of 1%.

As we mentioned below Eq.(18) one can define a transi-
tion temperatureTcsLd in a given finite sample, which sepa-
rates the regime in which there is a percolating cluster from
that in which the largest cluster is not percolating.(We note
that the percolating cluster at strong enough disorder, i.e.,
when lb!L, is fractal, in contrary to the cluster at the
breaking-up strength of disorder in Fig. 1, which is com-
pact.) The distribution of this temperature for bimodal and
continuous disorder is shown in Fig. 8 for periodic boundary
conditions. For large systems one expects that the distribu-

FIG. 5. Internal energy with bimodal disorder(bJ1=1/6 and
bJ2=5/6) as a function of the inverse temperatureb. Note the
discontinuities which are present after averaging in the thermody-
namic limit, cf. atb=0.75. In the inset the discontinuous behavior
at the transition pointb=5/6 isillustrated(the lines from bottom to
top are for increasing size fromL=32 to L=256).

FIG. 6. Internal energy for(quasi)continuous disorder as given
in Eq. (19). In the inset the latent heat is plotted as a function of the
inverse number of the discrete peaks in the distribution.
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tions approach a unique limiting curve in terms of the scaled
variablet= tc/s, wheretc=TcsLd−Tc is the distance from the
critical temperature in the infinite system and the variance of
the distribution scales asssLd,L−v, with some scaling ex-
ponentv. As seen in Fig. 8 this limiting distribution,Pstd,
has its maximum int.0 and the integrated distribution is
Psp=e0

−`Pstddt.1/2. As a matter of factPsp is the spanning
probability given by the fraction of samples in which the
largest cluster is percolating. Indeed a large(but finite)
sample percolating att.0 is also percolating atT=Tc. Ac-
cording to our numerical results for the bimodal distribution
Psp=0.63s1d. The finite-size corrections to the spanning
probability are given byPsp−PspsLd,DtsLd, where DtsLd
,L−e is the shift of the critical temperature. Here we note

that in a pure system the shift exponent is generally given by
e=1/n, if the transition is of second order. If, however, the
transition is of first order the critical exponent is given by its
discontinuity fixed point value[23,24], which is nd=1/d.
This is in accordance with the exact result in the pure model,
in which the shift in the transition temperature is given by
,1/N, as given below Eq.(13). From the available data we
could not make an independent estimate fore* ; however, the
data points seem to be consistent withe=1/n=1 for bimodal
randomness. The exponentv could be determined also with
relatively large errors giving an estimatev=0.9s1d.

We have also studied the location of the critical point on
the triangular lattice, for which the coordination number is
z=3, and on the hexagonal lattice, which hasz=3/2. In Fig.
9 we present the distribution of the finite-size critical tem-
peratures for different values of the number of sitesN for the
triangular and hexagonal lattices, with symmetric and con-
tinuous disorder, and for periodic boundary conditions. Here

we take as reference temperaturebr =1/szJ̄d, which is the
transition point for the nonrandom system and expected to be
a good approximation for symmetric disorder. The spanning
probability at the reference temperature isPsp=0.65s5d for
both kinds of lattices, which is close to that in the square
lattice.

V. MAGNETIZATION AND THE FRACTAL PROPERTIES
OF THE PERCOLATING CLUSTER

Order and correlations in the RBPM are related to the
structure of clusters in the optimal setG* . As we explained in
Sec. II at the critical point the largest cluster is a fractal, its
massM scales with the linear size of the systemL as M
,Ldf. The structure of a typical optimal set is illustrated in

FIG. 7. Scaling plot of the singular part of the internal energy in
Eq. (20) for bimodal disorder. In the plot there is one free parameter
n for which we used the conjectured value in Eq.(9).

FIG. 8. Distribution of the finite-size(percolation) transition
temperature for the bimodal(a) and the continuous(b) disorder for
different sizes of the system. Note that the difference from the exact
transition temperature is in the same order as the variance.

FIG. 9. Distribution of the finite-size transition(percolation)
temperature for triangular and hexagonal lattices with continuous
distribution of disorder for different sizes.
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Fig. 1 of Ref.[16] for the bimodal distribution. Note that in
G* each connected component contains all the possible
edges, since the inclusion of any coupling withJij .0 will
increase the cost function. The topology of clusters in ordi-
nary bond percolating is evidently different, since they con-
tain all the strong bonds but none of the weak ones.

We checked numerically that the largest cluster is indeed
a fractal by measuring the number of points in the cluster,
msr ,Ld, which are at most at distancer from a reference
point. Similarly we measured the number of points in the
cluster in the distance betweenr +1 and r : ssr ,Ld;msr
+1,Ld−msr ,Ld. Here we performed averaging(i) over the
position of the reference point and(ii ) over the disorder re-
alizations. Under a scaling transformation,r → r /b, msr ,Ld
andssr ,Ld are expected to behave as

msr,Ld = bdfmsr/b,L/bd,

ssr,Ld = bdf−1ssr/b,L/bd, s21d

Now in the first equation takingb=r we obtain msr ,Ld
=rdfm̃sL / rd, thus in a log-log plot one should obtain a
straight line for L. r. As seen in Fig. 10 this relation is
indeed satisfied both for the square and for the hexagonal
lattices, in both cases—within the error of the calculation—
having the same asymptotic slopes, which are compatible
with the conjectured result in Eq.(7). We also performed a
multifractal analysis showing only a single fractal dimen-
sion.

To have a more precise estimate of the fractal dimension
we calculated ssr ,Ld for finite systems of sizesL
=16, 32, 64, 128, and 256. Comparing results of two con-
secutive sites we obtaineddf from the second equation of Eq.
(21) by settingb=2. The effective fractal dimensions as plot-
ted in the inset to Fig. 11 have only weakr /L andL depen-
dences, and from the asymptotic behavior one can estimate

df =1.81s1d in good agreement with the conjectured result in
Eq. (7).

Next we studied the cumulative distribution of the mass
of the clusters,RsM ,Ld, which measures the fraction of clus-
ters having at least a mass ofM. According to scaling theory
[25] it should asymptotically behave as

RsM,Ld = M−tR̃sM/Ldfd s22d

with t=s2−dfd /df. Note that the scaling relation in Eq.(22)
contains only one free parameterdf which can be estimated
from an optimal scaling collapse of the distributions calcu-
lated for different sizes. As shown in Fig. 11 the scaling
collapse is excellent if the conjectured fractal dimension in
Eq. (7) is used. By analyzing the accuracy of the collapse we
obtained an estimate,df =1.810s5d, in very good agreement
with the conjectured value.

We close this section by studying the surface magnetiza-
tion of the model. Using open boundary conditions we mea-
sure the average mass of the surface sites belonging to the
largest cluster,Ms. According to considerations in Sec. II in a
finite system at the critical point this should asymptotically

behave asMs,Ldf
s
. According to the data presented in the

inset to Fig. 10 the surface fractal dimension is given bydf
s

=0.495s10d, which is in good agreement with the conjectured
value in Eq.(8).

VI. ANISOTROPIC RANDOMNESS AND RELATION WITH
THE STRONG DISORDER FIXED POINT OF

RANDOM QUANTUM CHAINS

In this section the random bond Potts model is related to
another problem of statistical physics, which has partially
exact results about its critical properties. The analogies and
relations between the models will be used to conjecture the
values of the critical exponents in the random bond Potts
model, which are already announced in Eqs.(7)–(9).

FIG. 10. Average mass of the percolating cluster within a region
of size r at the critical point for the square and the hexagonal lat-
tices. The conjectured asymptotic behavior is indicated by a straight
line. Inset: average mass of surface points of the percolating cluster
in the square lattice.

FIG. 11. Scaling plot of the cumulative distribution of the mass
of the clusters at the critical point, using the conjectured value of
the fractal dimension in Eq.(7). In the inset the fractal dimension is
presented as calculated from the ratio of the masses of the perco-
lating clusters in different finite systems(see text).
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The problem we consider first is the Potts model with
correlated bond disorder, in which the vertical bonds are con-
stant denoted byJi, whereas the horizontal couplings have
the same value in a given column,i =1,2, . . . ,L, denoted by
Ji. Here theJi are i.i.d. random variables and in the following

we chooseJi= J̄. This model, which for Ising spins is the
well-known McCoy-Wu model[3], is translationally sym-
metric in the vertical direction. Consequently the optimal set
has a striplike structure, and the 2D diagramG is uniquely
characterized by its 1D cut, denoted byg. The cost function
of the problem can be written asfsGd=Licsgd, where the
size of the system in the vertical(horizontal) direction isLi

,LsLd and

csgd = c1sgd +
1

Li

c2sgd + b o
i j Pg

Jij + bJ̄fL − c1sgdg s23d

is the cost function of the 1D problem. Herec1sgd is the
number of isolated points andc2sgd is the number of con-
nected diagrams which have at least two sites. In the thermo-
dynamic limit the second term in the rhs is negligible and
redefining the temperature we arrive to an equivalent cost
function

c̃sgd = c1sgd + b̃ o
i j Pg

Jij , s24d

with b̃=b / s1−bJ̄d and at the critical pointb̃J̄=1.The opti-
mization problem in Eq.(24) will be the subject of a separate
publication.

Next we consider the extreme anisotropic[26] (time con-
tinuum or Hamiltonian) limit of the strip-random Potts

model, where we letJi / J̄→0 and the transfer matrix of the
model in the vertical direction is written asT=exps−tHd.
Here t is the (infinitesimal) lattice spacing andH is the
Hamiltonian of a random Potts chain in the presence of a
transverse field[24]:

H = − o
i

Jidssi,si+1d − o
i

h

qo
k=1

q−1

Mi
k, s25d

whereMiusil= usi +1,modql. If the couplings in vertical lines
vary randomly from line to line then the transverse fieldshi
are random variables, too. The fixed point of the 2D strip-
random Potts model and that of the random quantum Potts
chain with Hamiltonian in Eq.(25) are isomorph, thus they
have the same set of critical exponents. The latter system has
been studied in detail by a strong disorder renormalization
group method, which was originally introduced by Ma, Das-
gupta, and Hu[27] and used later by Fisher[17] and others
[28–30]. This method is assumed to give asymptotically ex-
act results; in particular the critical exponents forqù2 are
identical [28] and are given by[17]

n' = 2, x' = 1 −f/2, x'
s = 1/2, s26d

which also hold for the 2D strip-random model.
Having the critical behavior in the presence of correlated,

anisotropic randomness we try to relate it to the original
problem, in which the disorder is isotropic. To do so we

imagine that at the fixed point of the anisotropic problem we
let the couplings to be random also in the vertical direction.
In this way translational symmetry in the vertical direction is
broken and in the originally homogeneous strips connected
and disconnected parts will appear. At the critical point these
two (creation and destruction) processes are symmetric,
therefore it is plausible to assume that the mass of the largest
cluster stays invariant. ThusM ,Li 3L1−x' ,Ldf, from
which the value of the fractal dimensiondf =2−x' as an-
nounced in Eq.(7) follows. Repeating this argument for a
surface cluster we obtain the result in Eq.(8). Another, and
related, assumption is that the correlation volume, i.e., the
surface of the largest cluster, grows in the same way in the
two problems, as the transition point is approached. This
means thatVstd,jistdj'std,Liutu−n' ,jstd2,utu−2n, from
which n=n' /2=1 follows, in accordance with the an-
nounced result in Eq.(9).

VII. CONCLUSION

One of the most spectacular effects of quenched disorder
is the rounding of first-order transitions. In 2D this phenom-
enon cannot be studied in a perturbative basis around the
pure systems’ fixed point. In this paper we have demon-
strated that an almost complete understanding of this phe-
nomenon can be achieved in the other limiting case, when
the effect of disorder is strong and dominates the critical
behavior. We argued that the appropriate system for this pur-
pose is the random bond ferromagnetic Potts model in the
large-q limit, in which thermal fluctuations are strongly sup-
pressed. In the random cluster representation the properties
of the system are related to the dominant diagram of the
high-temperature expansion. At the critical point this dia-
gram is a self-similar fractal, giving a natural explanation of
the diverging length scale, and its bulk and surface fractal
dimensions are related to the critical exponents of the tran-
sition. We have introduced a plausible mapping between our
isotropic system and that of strictly correlated disorder,
which is isomorph with random quantum spin chains for
which the critical properties are known. The critical proper-
ties conjectured in this way are then checked by large scale
numerical calculations based on a very efficient combinato-
rial optimization algorithm. We have studied in detail the
possible differences in the results obtained for discrete or
continuous disorder. For discrete randomness, such as the
bimodal one, which is frequently used in numerical calcula-
tions, the internal energy displays discontinuities, also the
latent heat is finite. This observation should make people
cautious while analyzing data obtained by the use of discrete
disorder.

The results of this paper can be extended in several direc-
tions. Including in the distribution of the couplings the val-
uesbJij ,0 andbJij .1 we obtain a system in which perco-
lation and random bond effects compete. This problem can
also be studied by our optimization algorithm and the prop-
erties of the stable fixed point can be calculated by analyzing
the fractal properties of the relevant diagrams. Another ex-
tension is to include negative couplings, thus a Potts spin-
glass problem is obtained. This still can be formulated as an
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optimization problem, which is most probably np-complete.
Considering the ferromagnetic case one can try to perform a
large-q expansion around the conjecturedly exact results. For
the critical exponents the corrections are expected to go as
1/ ln q [15]. Finally, a further possible study is to clarify the
dynamical properties of the system and to show if there are
some relations with the ultraslow dynamics present in ran-
dom quantum spin chains[17,31].
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APPENDIX

Here we present two examples to illustrate the discontinu-
ous nature of the internal energy in theq→` limit.

We start with a 333 plaquette of the square lattice in
which the couplings are 1 or 5 with the same probability. The
realization we investigate is shown in the inset to Fig. 12. To
illustrate the approach toq→` we have calculated for dif-
ferent values ofq the internal energy as a function of the
reduced temperaturesT→T ln qd, as introduced below Eq.
(1). As seen in Fig. 12 for any finiteq the internal energy is
continuous and becomes discontinuous only in theq→`
limit.

Our second example is to illustrate the effect of rounding
due to averaging over disorder. We consider here an elemen-
tary triangle in which the edges carry the(positive) weights:

a, b, andc (a=bJa, etc.). By simple inspection one finds that,
for a given tripletha,b,cj, the free energy is

− bFa,b,csbd =51 + bsã + b̃ + c̃d if ã + b̃ + c̃ ø
2

b

3 if
2

b
ø ã + b̃ + c̃

when ã+ b̃ø c̃ and

− bFa,b,csbd =5
1 + bsã + b̃ + c̃d if c̃ ø

1

b

2 + bc̃ if ã + b̃ ø
1

b
ø c̃

3 if
1

b
ø ã + b̃

when c̃ø ã+ b̃. We use the notationhã,b̃, c̃j=ha,b,cj and ã

ø b̃ø c̃ (i.e., the variables with the tilde are ordered in as-
cending order).

For the uniform distribution of disorder in Eq.(12) with

J̄=D=1/2 onefinds for theaverageinternal energy

EsTd =5
−

1

8
T4 − T3 +

3

2
, T , 1

− 2T4 + 8T3 − 9T 2 +
27

8
, 1 , T ,

3

2

0,
3

2
, T,

which is a continuous function of the temperature.
By contrast for the discrete bimodal distribution in Eq.

(11) with J̄=1/2 andD=1/Î3, which has the same mean and
variance as the uniform distribution, the internal energy is
given by

EsTd =5
0, T ,

3

4
−

Î3

4

3

16
−

Î3

16
,

3

4
−

Î3

4
, T , 1 −

Î3

3

3

2
, 1 −

Î3

3
, T ,

1

2
+

Î3

6

3

4
−

Î3

8
,

1

2
+

Î3

6
, T ,

3

4
+

Î3

12

21

16
−

Î3

16
,

3

4
+

Î3

12
, T ,

3

4
+

Î3

12

3

2
,

3

4
+

Î3

12
, T.

This presents five discontinuities of width 0.079, 0.296,
0.158, 0.671, and 0.296 at the temperatures 0.317, 0.423,
0.789, 0.894, and 1.183, respectively.

FIG. 12. Average internal energy as a function ofb for various
values ofq. In the inset the analyzed plaquette is shown, where the
thick lines represent strong bondssJ=5d and the thin lines weak
onessJ=1d.
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